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The suitability of the Boltzmann equation for calculating transport coefficients 

1 of partially ionized gases is discussed. Analytical and experimental investigations 
are cited to show that it can be used as a starting point to calculate the total 
thermal conductivity. The Chapman-Enskog solution of the Boltzmann equation is used 
to derive an expression for the total thermal conductivity, composed of three parts - 
the translational, reactive, and thermal diffusive Components. The reactive and 
thermal diffusive components are explicitly expressed in terms of the multicomponent 
and thermal diffusion coefficients. Effects of higher order Sonine expansion terms 
are examined for the various transport coefficients. The first three orders of the 
Sonine expansion terms are required f o r  the accurate calculation of the translational 
thermal conductivity, whereas only the first two orders are sufficient for the cal- 
culation of the multicomponent and thermal diffusion coefficients. These diffusion 
coefficients are then used to calculate the reactive and thermal diffisive components 
of the total thermal conductivity of hydrogen, nitrogen, and argon at conditions 
where the reactive component is at a maximum. These values of the reactive conductiv- 
ity are examined to determine the relative importance of multicomponent and thermal 
diffisicn. The predominant mechanism for hydrogen is the binary diffusion of atoms 
and ions, although the effects of t h e m 1  diffusion of electrons is also important. 
Thermal diffusion becomes more dominant as the molecular weight of the atom increases. 
In fact, the multicomponent diffusive effects for argon cancel, and the reactive 
thermal conductivity can be attributed almost entirely to the thermal diffusion of 
electrons. 
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multicomponent diffusion, thermal conductivity, thermal diffusion. 

1. Introduction 

An object traveling through an atmosphere has part of its kinetic energy converted into thermal 
excitation of the surrounding flow field gas molecules. When the speed is sufficiently high, the gas 
decomposes into a complex mixture of molecules, atoms, ions, and electrons. The total thermal conductiv- 
ity of this gas must be known in order to determine the heat flux into the surface of the object. In the 
calculation of the thermal conductivity of this ionized gas, one would ask the following questions. 
First, does the presence of charged particles introduce phenomena which affect the thermal conductivity? 
Second, is the theory which is used for neutral gases sufficiently general to account for these phenomena? 
This paper will describe some of the analytical and experimental work done in the past few years to 
resolve these two questions. 

The greatest difference between an ionized gas and a neutral gas lies in the range of intermolecular 
forces. 
cle and a neutral particle is orders of magnitude smaller than the average intermolecular spacing. These 
effective ranges are in accord with the basic assumption that particle collisions in the gas are binary - 
a necessary condition for the validity of the Boltzmann equation governing the transport coefficients of 
neutral gases. In contrast, the effective range of the intermolecular forces between two charged parti- 
cles is usually greater than the average intermolecular spacing. At first appearance, this suggests 

For example, the effective range of the force between two neutral particles or a charged parti- 

. . I  ’Research Scient is t 



t ha t  the .Boltzmaann equation i s  not val id  f o r  gases w i t h  an appreciable degree of ionization2. 
ation. prompt'ed Spi tzer  and h i s  coworkers [l and PI3 t o  derive a theory which describes t ransport  phenom- 
ena ( spec i f i ca l ly  e l e c t r i c a l  and thermal conductivity) of an electron gas where the  interact ions a re  
a t t r ibu ted  t o  many long-range simultaneous b u t  independent Coulombic interact ions.  The co l l i s ion  term i n  
the  Boltzmann equation w a s  replaced by the Fokker-Planck expression which describes these simultaneous 
interact ions.  
t ions  of t ne  Boltzmann and Fokker-Planck equations and concluded tha t  the  Boltzmann equation was va l id  

This s i t u -  

Recently Gross [ 3 ] ,  Grad [4], Koga [ ? I ,  and others re-examined the  mathematical implica- 

fo r  

The 

ionized gases a f t e r  a l l .  Grad s ta ted tha t  

". . .The c r i t i c a l  point here i s  tha t ,  although the  two physical p ic tures  a re  en t i r e ly  d i f -  
fe ren t ,  t h e i r  mathematical descr ipt ions a re  identical! The net e f f ec t  of many successive inde- 
pendent small impulses i s  the  same as  many simultaneous independent small impulses, provided 
only t h a t  t he  means and variances of the  two impulse d is t r ibu t ions  a r e  the  same (actual ly ,  the  
en t i r e  probabi l i ty  d is t r ibu t ions  were taken t o  be the same). 
penci l  t o  paper, t h a t  the  Fokker-Planck equation, which i s  an immediate consequence of t he  
simultaneous grazing impulse model, must yield r e su l t s  i den t i ca l  with those obtained from the 
Boltzmann equation, provided t h a t  an appropriate grazing co l l i s ions  approximation is  made and 
the  same cut-off i s  used i n  the l a t t e r  computation." 

Thus we conclude, without s e t t i ng  

e\:.ivalence between the  Boltzmann and Fokker-Planck equation fo r  the  case of a f i l l y  ionized gas was 
fur ther  demonstrated by the  excel lent  agreement of t he  two sets of values of t ransport  coeff ic ients  based 
on these equations [2 ] .  

A more rigorous theory fo r  f i l l y  ionized gases can be derived from Bogolyubov-Born-Green-Kirkwood- 
Yvon hierarchy of equations 161 which account fo r  simultaneous but  dependent interact ions ( i . e .  many 
pa r t i c l e  cor re la t ions) .  
from the B-B-G-K-Y approach i s  almost ident ica l  t o  t ha t  fo r  the  Fokker-Planck approach. 

An analysis  by Sundaresan and Wu 171 has s h m  tha t  t h e  thermal conductivity 

The accuracy of the  Boltzmann equation was demonstrated i n  two recent experiments by m o n s  181 and 

Although the thermal conductivity could not be measured accurately a t  l a rge  
Morris [93. 
of p a r t i a l l y  ionized gases. 
degrees of ionizat ion because of the masking effects  of thermal radiat ion,  the  e l e c t r i c a l  conductivity 
was measured. In  f igures  1 and 2 the experimental values of t he  e l e c t r i c a l  conductivity are  compared 
with values based on the  Boltzmann equation (second-order Chapman-Enskog formulation). It can be seen 
tha t  the  agreement i s  f a i r l y  good over the  entireorange of temperatures (degree of ionizat ion ranging 
from 1 percent a t  9000% t o  100 percent a t  22,000 K). Since the  predominant cross sect ion f o r  the  elec- 
t r i c a l  conductivity i s  the well-verified Coulombic cross section, the  agreement shown i n  f igures  1 and 2 
i s  a good indicat ion of the  v a l i d i t y  of t h e  Chapman-Enskog formulation of the Boltzmann equation f o r  a l l  
degrees of ionization. 
can be accurately predicted a t  these high degrees of ionizat ion s ince the  predominant cross sections 
(e.g. atom-ion e l a s t i c  and charge-exchange cross sections) a r e  not known accurately, and since there  a re  
d i f f e ren t  types of d i f fus iona l  e f f ec t s  present in  thermal conduction. This means t h a t  measurements of 
thermal conductivity a re  s t i l l  necessary. 

The goal of t h e i r  experiments was the measurement of the  e l e c t r i c a l  and thermal conductivity 

Unfortunately, t h i s  is no guarantee tha t  the  values of the  thermal conductivity 

2. Derivation of T o t a l  Thermal Conductivity 

The ana ly t i ca l  and experimental work described i n  the  previous sect ion indicate  tha t  the  Boltzmann 
equation can be used as a s t a r t i n g  point t o  calculate the  t o t a l  t h e m l  conductivity. 
described i n  t h i s  paper i s  the  same as  the  Chapman-Enskog formulation applied t o  the  case of neut ra l  
monatomic gas mixtures by Hirschfelder, Curtiss, and Bird 1101 and w i l l  be examined t o  determine i t s  
s u i t a b i l i t y  f o r  a p a r t i a l l y  ionized gas. Besides the difference i n  the  range of intermolecular forces a 
p a r t i a l l y  ionized gas d i f f e r s  from a neut ra l  gas in  two other respects. F i r s t ,  a charge separation f i e l d  
a r i s e s  because of l oca l  differences i n  the  ion and electron concentrations, and second, the  r a t i o  of the  
mass of t he  heaviest p a r t i c l e  t o  t h a t  of the  l i gh te s t  pa r t i c l e  increases by a t  l e a s t  th ree  orders of mag- 
nitude due t o  t h e  presence of f r e e  electrons. A great amount of foresight  was used i n  the  der ivat ion of 
the complete Chapman-Enskog formulation, f o r  there ex i s t  terms which account f o r  these two differences. 
In  pr inc ip le  the  charge separation f i e l d  can be  calculated s ince a macroscopic force term i s  included i n  
the  Chapman-Enskog formulation. 
flmdamental difference,  but it does mean a re-evaluation of cer ta in  computational s implif icat ions which 
were carr ied m e r  from t h e  calculat ion of the thermal conductivity of neut ra l  gas mixtures. For example, 
it has been customary t o  discard cer ta in  Sonine expansion terms i n  the  t r ans l a t iona l  t h e m l  conductivity 
and the  multicomponent diffusion coeff ic ients ,  and t o  omit e f f ec t s  of thermal d i f fus ion  on the  t o t a l  
thermal conductivity [lo]. 
small f o r  neu t r a l  gas mixtures, but  it a l s o  shows t h a t  t he  e f f ec t s  become increasingly important as  the 

The approach 

The much l a rge r  mass r a t i o  i n  p a r t i a l l y  ionized gases i s  not r e a l l y  a 

An examination of thermal d i f fus ive  e f f ec t s  does show t h a t  the  e f f ec t s  a r e  

2The Boltzmann approach i s  present ly  the only one avai lable  f o r  t h e  calculat ion of t ransport  coef- 
f i c i e n t  of p a r t i a l l y  ionized gases, although many competing approaches a r e  avai lable  for  f i l l y  ionized 
gases. 

'Figures i n  brackets ind ica te  the  l i t e r a t u r e  references a t  the  end of t h i s  paper. 
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r a t i o  mheavy/mlight increases. Consequently, the author [11 and 121 showed t h a t  it was  necessary 
include the'discarded Sonine expansion terms and t o  include thermal diff'usive e f fec ts .  The r e su l t s  
these calculat ions w i l l  be described i n  the  next section. 

The calculat ion of the t o t a l  thermal conductivity is  based on the  expression fo r  the heat f l u  
vector 

T where D i  i s  the thermal 
species i. The quant i ty  
concentration gradients. 

~- 

t o  
of 

diffbsion coeff ic ient ,  and h i  i s  the t o t a l  enthalpy of a pa r t i c l e  of 

The diff'usion veloci ty ,  Li, i s  defined as 
A t  i s  the t h e m 1  conductivity o f  a s p a t i a l l y  homogeneous gas mixture without 

vhere D i j  
ionized gas i n  the  absence of pressure gradients i s  defined as 

i s  the  multicomponent d i f fus ion  coeff ic ient  and the  "forcing poten t ia l"  fo r  a pa r t i a l ly  

where ~i is the  charge, Zje, fo r  a pa r t i c l e  of species 
difference i n  ion and electron concentrations. 
i l l  t h a t  ZieG 
describes an external  macroscopic force. However, the conceptual difference i s  only apparent as & 
always stems from an external  energy source (e.g. heating co i l s ) .  
t he  system such t h a t  the  average temperature i s  high enough t o  ionize the gas, but the  temperature gra- 
d ien t  i s  small ecough t o  ju s t i fy  l inear iza t ion  proced.ures. 
gradients, hi,&, and a charge separation f i e ld ,  I&. 
proportional t o  the  temperature gradient, it can be seen from eqs ( 2 )  and (3)  that 
proportional t o  the  temperature gradient. 

i, and E&. is  the  e l e c t r i c  f i e l d  generated by a 
Equation ( 3 )  d i f f e r s  from the  expression for  & i n  [lo] 

describes an in te rna l  macroscopic force whereas the  corresponding quant i ty  i n  [lo] 

Assume t h a t  t h i s  energy i s  imposed on 

The temperature gradient induces concentration 
If  it i s  assumed t h a t  both hi/& and & are  

vi and Ai are  a l so  
The heat f lux  vector can then be expressed as 

The reac t ive  component of t h e  t h e m 1  conductivity, Ar, derives i t s  name because of t he  addition of t he  
react ion energy t o  the enthalpy of the individual species [131. 
described i n  terms of a diffusion cycle. I n  the  higher temperature region the  concentration of ions and 
electrons a re  l a rge r  than i n  the  lower temperature region, forcing tne charged pa r t i c l e s  t o  d i f fuse  
toward the  lower temperature region. 
re leas ing  the  ionizat ion energy ( i . e .  t ransport  of energy). 
forced by the  atomic concentration gradient t o  diffuse toward the  higher temperature region where the  
ionizat ion process occurs. The t r ans l a t ion  component, A t ,  i s  t he  conductivity of a spa t i a l ly  homogeneous 
gas mixture without concentration gradients, and is  the  only component explained by simple k ine t i c  theory 
[lo]. For obvious reasons, the  t h i r d  component of the  thermal conductivity, Ad, i s  cal led the  thermal 
d i f fus ive  component. Unfortunately, no simple physical p ic ture  can describe t h i s  mode of heat t ransport .  

The calculat ion of A t  i s  straightforward and i s  described by Hirschfelder, Curtiss, and Bird [lo]. 
Before numerical values for A, and h d  
centrat ion gradient of each species and the  charge separation f i e l d ,  a l l  i n  terms of the  temperature 
gradient. 
( i .e .  a te rnary  mixture of atoms, A, ions, I, and electrons, e) .  The solut ion of t he  problem can be 
expressed i n  terms of four dependent var iables  - the concentration gradients f o r  the  atom, ion, and 
electron,  and the  charge separation f i e l d ,  a l l  expressed i n  terms of t he  temperature gradient. However, 
t he re  are only th ree  independent equations relat ing these four quant i t ies .  Two of these equations a re  
statements of t he  flux conservation of elemental par t ic les  as f o m l a t e d  by Butler  and Brokaw [l3]. For 
t h e  ternary mixture the elemental pa r t i c l e s  a r e  defined as  a s ingly  charged ion and an electron. Then 
f lux  conservation requires  t h a t  t he  d i f fus ion  veloci t ies  be r e l a t ed  as follows4: 

This mode of heat t ransfer  can be 

In  t h i s  region, the  ion recombines with an electron,  thereby 
The cycle is  completed when the atom i s  

can be cdcula ted  it i s  necessary t o  obtain values f o r  the  con- 

A + I + e The simplest case which can be examined is  t h a t  f o r  a gas undergoing the  react ion 

*More exp l i c i t  forms of ( 5 )  and (6), where i s  expressed i n  terms o f  di, was used i n  the 
calculat ion of [ 141 . 

~~ ~ 



XAXA + x& = 0. 

The th i rd  equation can be derived from the expression f o r  the  equilibrium constant, 

3 
Kp = n (xipIai, 

i=i 

where the  
t i on  of  t ne  gradient of eq (7 )  with exp l i c i t  expressions fo r  the charge separation force r e su l t s  i n  

a i ' s  a r e  the  stoichiometric coeff ic ients  fo r  the  react ion ( a A  = -1, a1 = 1, ae = 1). Combina- 

K p . b r = - -  1 1 d ln 
' d  + - d  + - d e .  dT ax x A -A x I -I xe 

The author [12] discussed tne  d i f f i c u l t i e s  i n  solving eqs ( 5 ) ,  (6), and (8) for 
not o f f e r  a solut ion.  
ables  by assuming t h a t  the  concentration gradient of t he  ion was equal t o  tha t  for the  electron. 
Jus t i f i ed  t h i s  assumption by combining concepts from e l ec t ros t a t i c s  and plasma physics with expressions 
from non-ecpilibrium thermodynamics, then using order of approximtion arguments. The accuracy of t h i s  
approach w i l l  be discussed l a t e r .  
(6), and (8) t o  solve for 
conductivity is  

and 3, but  could 
Subsequently, Meador and Staton [l5] circumvented the  problem of too many va r i -  

They 

Meador and Staton used the  equal i ty  of &I/& and axe/& i n  eqs (51, 
ax,/& and ?&. Their expression for t he  reac t ive  component of the  thermal 

which i s  iden t i ca l  t o  the  Butler  and Brokaw expression for dissociat ing gases [13] i f  it is  assumed that 
the  multicomponent diffusion coefficient DAI can be approximated by the  binary diffusion coeff ic ient  
&AI. This equation has several  implications: (1) The reac t ive  component i s  completely dominated by the  
binary d i f f i s i o n  between the  ion and atom, (2 )  The reac t ive  component i s  independent of the  motion of the  
electron, and (3)  The reac t ive  component is  not affected by thermal d i f fus ive  e f fec ts .  

I n  a subsequent paper [14] the  author a l so  derived an expression fo r  the  t o t a l  thermal conductivity. 
I n  contrast  t o  t he  Meador and Staton work, it was  not necessary i n  [141 t o  r e l y  on any subsidiary assump- 
t ions ,  and the der ivat ion was exact within the framework of the  Chaprin-Enskog formulation. The C ~ I X  o f  
t h i s  approach i s  not t o  separate the forcing potent ia l ,  21, of eq (3 )  i n to  axi/a; and & 
bu t  t o  solve f o r  & d i r e c t l y  by d i n g  use of  the conservation of the  net f lux  for each elemental par- 
t i c l e .  
t r a t i o n  gradients  w i l l  readjust  themselves s o  that the  net flux is  conserved (eqs ( 5 )  and ( 6 ) ) .  
Therefore, the  cornbined ef fec ts  of hi/& and & i n  t he  form of & is a more log ica l  dependent 
var iable  than i t s  components. The solut ion for the various 
(8).  The determinantal expression for the  various 23's i s  

components, 

Physically, t h i s  means tha t  regardless o f t h e  value of t he  charge separation f i e ld ,  t he  concen- 

k ' s  i s  then obtained from eqs ( 5 ) ,  (6), and 



where 

A combination of eqs (l), ( e ) ,  (lo), and (11) gives the final expression for the total thermal 
conduct ivi t y : 

r 
n2 n2 
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where At 
is the reactive thermal conductivity, and the sum of the remaining terms is the thermal conductivity due 
to thermal diffision. Note that the reactive component has two modes. The first is by multicomponent 
diffusion and the second by thermal diffusion. 
eq (12) reduces to 

is the translational thermal conductivity, the sum of all terms containing the various hi's 

For a fully ionized gas5 (i.e. no neutral particles) 

'total = At 

where p is the reduced mass of the electron-ion system. 

Since the terms in eq (12) are so complex it would be impossible to single out by inspection any one 
mechanism (e.g. thermal diffusion) as being the chief contributor to A r  or Ad. This can be done only 
by an inspection of the numerical values which are described in the next section. However, it can be 
seen from eq (12) that there is a definite need for accurate values of the multicomponent and thermal 
diffusion coefficients since A r  and Ad are determined by Dij and DY, and since 6i (the combined 
effect of the concentration gradients and the charge separation field) are also determined by 
(eqs (10) and (11)). 

T Dij and Di 

3. Numerical Values of Higher Order Transport Coefficients 
T The importance of higher order Sonine expansion terms in the expressions for At, Dij, and Di will 
If the be described first. 

first and second Sonine expansion terms are used (second approximation) then both determinants contain 
four subdeterminants which are designated as the 00, 01, 10, and 11 subdeterminants, where the 0 cor- 
responds to the first Sonine polynomial and the 1 corresponds to the second Sonine polynomial. In the 
calculation of the thermal conductivity of neutral gases the 00, 01, and 10 subdeterminants are normally 
discarded (first approximation) with very little l o s s  in accuracy [lo]. Unfortunately, this simplifica- 
tion was carried over into the calculation of the thermal conductivity of partially ionized gases. 
result of this approximation is shown in figure 3 for partially ionized argon. The second approximation 
of 
50 percent at complete ionization. 
determinants [12] show that the increase in ht in going from the first to the second approximation can 
be attributed to the inclusion of additional terms in the 00 subdeterminant arising from interactions 
between unlike particles ( A - I ,  e-A, and e-I). Subsequent analyses by DeVoto [16 and 171 showed that 
third order Sonine expansion terms for the translational thermal conductivity were also appreciable. 
Figure 3 shows that the difference between the third and second approximations for is roughly the 
same as the difference between the second and first approximations. DeVoto's calculations, however, show 
very little difference between the third and fourth approximations. Landshoff Is [18] calculations for an 
electron gas show roughly the same trends in going from the second to the fourth approximation. 

The expressions for At, Dij, and D: [lo] are the ratio of two determinants. 

The 

At 1121 is larger than the first approximation by 30 percent at 50-percent ionization and larger by 
An inspection of the numerical values of the elements in the At sub- 

At 

'The author [le] erroneously identified At with Spitzer's [21 field free therm1 conductivity. 
The error was resolved by the analysis of Meador and Staton. 



Multicomponent diffusion coefficients are usually approximated by retaining only the first Sonine 
expansion terms (i.e. using only the 00 subdeterminant). 
with the second-order coefficients (i.e. both first and second Sonine exmnsion terms) in figure 4. 
second-order coefficients 
by 25 percent at 50-percent ionization and by 45 percent at complete ionization. An inspection of the 
numerical values of the elements in the Dij subdeterminants show that the increase in Dij in going 
from the first to tk?e second approximation can be attributed to the inclusion of term in the 11 sub- 
determinant arising from interactions between like particles (A-A, 1-1, and e-e). The electron-electron 
interaction is especially important since a simple hard sphere model shows that is inversely pro- 
portional to the product of the collision cross section and the reduced mass. 
and second-order coefficients for diff’usion between heavy particles (e.g. DA-I) differ by only a few 
percent. DeVoto’s calculations show that there is little difference between second- and third-order 
multicomponent and thermal diffusion coefficients. 

These first-Order coefficients are compared 
The 

D,-A( 2) and De-l( 2) are larger than the corresponding first-order coefficients 

Dij 
In contrast, the first- 

It is essential that second-order t h e m 1  diffusion coefficients be used since these coefficients 
Typical values of the second-order thermal diff’usion 

In the expression 
always occur in combination with the particle 

are identically zero in the first approximation. 
coefficients for the argon atom, ion, and electron from [ll] are shown in figure 5. 
for the total thermal conductivity (eq (12))) df 
mass in the denominator. 
of mgnitude smaller than those for the atom and ion, the electron mass is four orders smller. Conse- 
quently, thermal diff’usive effects can be attributed almost entirely to the electron term. 
interesting conclusion can be reached by an inspection of figure 5. It can be seen that the atom and ion 
thermal diffusion coefficients are within 1 percent of each other in magnitude from a few percent ioniza- 
tion up to extremely high degrees of ionization (approximately 95 percent). Beyond this point ll!$ 

decreases in value, changes sign, then approaches the value of DZ near 100-percent ionization. These 
variations imply that the diff’usive motion of both the atom and ion are essentially independent of that 
for the electron, up to large degrees of ionization. 
dictated by the ion rather than the atom because of the greater magnitude of the Coulombic forces6. 
These same conclusions were reached from an examination of the second-order multicomponent diff’usion 
coefficients. 

Although the electron thermal diffusion coefficient, @, is at most two orders 

Another 

The diffusive motion of the electrons, in turn, is 

T Dij and Di The previous discussion of second-order values of leads towards the calculation of A, 
and A d  from eqs (lo), (11)) and (12). The author recently made a series of calculations for hydrogen, 
nitrogen, and argon for a pressure of one atniosphere and temperatures corresponding to 50-percent ioniza- 
tion. were compared with those based on the expressions derived by Meador and Staton 
[l5]. The values of A, from the two sets of calculations agreed within a few percent. However, this 
is not necessarily a verification of the Meador and Staton approach, as calculations have shown that any 
non-trivial assumed values of 
agreement can be explained as follows. 
effects of the concentration gradients and the charge separation field, but by their combined effects. 
Consequently, if erroneous values of the concentration gradients were initially assumed the constraints 
of the problem (eqs ( 5 ) )  (6)) and (8)) would compensate for this error in the resulting value of the 
charge separation field. 

The values of A, 

&I,,/& and &e,,/& will result in the same values of A r  and Ad. The 
are determined not by the separate The values of A, and A d  

1 ~~ - 

At( 2) 
Gas 

W m-l deg-l 

Hydrogen 1.9 

Nitrogen 1.34 

Argon 1.31 

A more critical comparison could come from the determination of the predominant mechanism for the 
reactive component of the thermal conductivity. 
two components: (1) the sum of the hin2mjDij6j/p terms which shall be called the Dij component for 
identification, and (2) the sum of the hiDF/miT terms which shall be called the Di component. The 
results are summarized in the following table. 

The reactive component from eq (12) can be resolved into 

T 

~ ~ ( 2 )  w m-l deg-l Ad( 2, 

T Dij component D. component W m-’ deg’’ 
1 

5.77 1.78 -0.20 

0.87 1.30 -0.25 

-0.17 1.32 -0.29 
\ 

Table I. T h e m 1  Conductivity Components for Partially Ionized Gases (p = 1 atm, 5% ionization) 

T 
De ‘As a result, the values of calculated for Wrtially ionized argon can be used for other 

partially ionized gases to a good degree of accuracy. 



For hydrogen the largest contribution comes from the 
component is the hIn Q.DI-AGA/P term as predicted by Meador and Staton. 
contribution is not negligible, but comprises 25 percent of the value of 
particle increases, thermal diffusive effects become relatively more important. 
the DT component of 1, is larger than the D i j  component. In argon the Dij component is ahost 
zero due to the cancellation of the ion termby the atom and electron term. Consequently, the reactive 
thermal condi ic t ivi ty  for argon can be attributed almost entirely to the 
nant term in this component is the heDz/+T term. 
predicted by Meador and Staton and indicates that one or more of their initial assumptions m y  be 
erroneous. 

Dij component, and the predominant term in this 
However, the thermal diffbsive 
A,. As the mass of the heavy 

For example, in nitrogen 

df component, and the predoini- 
This result is in direct contradiction to those 

This paper has described the analytical work done in the past few years to clear up some of the 
uncertainties in the expression for the total thermal conductivity of a partially ionized gas. 
author feels that the theoretical basis for this expression is currently on substantial ground. 
there are several deficiencies which must be resolved before accurate values can be calculated. The 
first of these is the lack of measured or calculated cross  sections for collisions between an atom which 
is chemically unstable at low temperatures (e.g. nitrogen or oxygen) and an electron, ion, or another 
chemically unstable atom. A second deficiency is the absence of terms in the expressions for the trans- 
port coefficients which account for inelastic collisions, and the lack of measured or calculated cross 
sections for these inelastic collisions. A third deficiency is the absence of any experimental verifica- 
tion of the total thermal conductivity, especially in the region of 50-percent ionization where 
peaks because of the reactive component. 
technique as used by Carnevale et al. [19]. 
effort must still be expended to remedy these deficiencies before accurate values of the total thermal 
conductivity of a partially ionized gas can be obtained. 

The 
However, 

Atotal 

Consequently, large amounts of analytical and experimental 
A method which shows some promise is the ultrasonlc absorption 
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FIGUFJ3 LEGENDS 

Figure 1.- Comparison of experimental and tneoretical electrical conductivity of nitrogen. 

Figure 2.- Cornparison of experimental and theoretical electrical conductivity of argon. 

Figure 3.- Comparison of various approximations f o r  calculating the translational thermal conductivity of 

argon. 

Figure 4.- Comparison of various approximations for calculating multicomponent diffhsion coefficients of 

argon. 

Figure 5.- Thermal diffusion coefficients of argon. 
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